前缀和

Posted on 2021-08-31  9 Views


1、一维前缀和

基础思路:
a[1]+a[2]+…+a[n]=s[n]
求出s[i]后利用s[i]求
a[r]+a[r+1]+…+a[l]=s[l]-s[r-1]


例题:

输入一个长度为n的整数序列。
接下来再输入m个询问,每个询问输入一对l, r。
对于每个询问,输出原序列中从第l个数到第r个数的和。

输入格式
第一行包含两个整数n和m。
第二行包含n个整数,表示整数数列。
接下来m行,每行包含两个整数l和r,表示一个询问的区间范围。

输出格式
共m行,每行输出一个询问的结果。
数据范围
1≤l≤r≤n,
1≤n,m≤100000,
−1000≤数列中元素的值≤1000
输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10


代码:

#include<iostream>
using namespace std;
int main(){
    int n,m,a[n+1],s[n+1];
    scanf("%d %d", &n, &m);
    b[0]=0;
    for(int i = 1; i < n + 1; i++)
    {
        scanf("%d ", &a[i] );
        b[i]=b[i-1]+a[i];
    }
    while(m--)
    {
        scanf("%d %d", &r ,&l);
        cout<<b[r]-b[l-1]<<endl;
    }
    return 0;
}

二维前缀和:

基础思路:

矩阵s[i][j] += a[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1],
即以(x1, y1)为左上角,以(x2, y2)为右下角的子矩阵的和为s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]

例题:

题目
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。

输入格式
第一行包含三个整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。

输出格式
共q行,每行输出一个询问的结果。

数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
————————————————


代码:

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1010;
int n,m,q;
int a[N][N],s[N][N];
int main()
{
    scanf("%d %d %d",&n,&m,&q);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            s[i][j]=s[i-1][j]+s[i][j-1]+a[i][j]-s[i-1][j-1];  //求前缀和
        }
    }
    while(q--)
    {
        int x1,y1,x2,y2;
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        printf("%d\n",s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1]);
    }
    return 0;
}

欢迎来到parafish的个人博客,这里是一个正在努力的ctfer

路虽远,行则必至